top of page

Review & Group Exercises


NumPy Exercises

Now that we've learned about NumPy let's test your knowledge. We'll start off with a few simple tasks, and then you'll be asked some more complicated questions.

Import NumPy as np

Create an array of 10 zeros

array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

Create an array of 10 ones​

array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

Create an array of 10 fives​

array([ 5., 5., 5., 5., 5., 5., 5., 5., 5., 5.])

Create an array of the integers from 10 to 50​

array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,

44, 45, 46, 47, 48, 49, 50])

Create an array of all the even integers from 10 to 50

​array([10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,

44, 46, 48, 50])

Create a 3x3 matrix with values ranging from 0 to 8​

array([[0, 1, 2],

[3, 4, 5],

[6, 7, 8]])

Create a 3x3 identity matrix

array([[ 1., 0., 0.],

[ 0., 1., 0.],

[ 0., 0., 1.]])

Use NumPy to generate a random number between 0 and 1

array([ 0.42829726])

Use NumPy to generate an array of 25 random numbers sampled from a standard normal distribution

array([ 1.32031013, 1.6798602 , -0.42985892, -1.53116655, 0.85753232,

0.87339938, 0.35668636, -1.47491157, 0.15349697, 0.99530727,

-0.94865451, -1.69174783, 1.57525349, -0.70615234, 0.10991879,

-0.49478947, 1.08279872, 0.76488333, -2.3039931 , 0.35401124,

-0.45454399, -0.64754649, -0.29391671, 0.02339861, 0.38272124])

Create the following matrix:

array([[ 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 ],

[ 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2 ],

[ 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3 ],

[ 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4 ],

[ 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5 ],

[ 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6 ],

[ 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7 ],

[ 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8 ],

[ 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9 ],

[ 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1. ]])

Create an array of 20 linearly spaced points between 0 and 1:

array([ 0. , 0.05263158, 0.10526316, 0.15789474, 0.21052632,

0.26315789, 0.31578947, 0.36842105, 0.42105263, 0.47368421,

0.52631579, 0.57894737, 0.63157895, 0.68421053, 0.73684211,

0.78947368, 0.84210526, 0.89473684, 0.94736842, 1. ])

Numpy Indexing and Selection

Now you will be given a few matrices, and be asked to replicate the resulting matrix outputs:

mat = np.arange(1,26).reshape(5,5)

mat

array([[ 1, 2, 3, 4, 5],

[ 6, 7, 8, 9, 10],

[11, 12, 13, 14, 15],

[16, 17, 18, 19, 20],

[21, 22, 23, 24, 25]])

array([[12, 13, 14, 15],

[17, 18, 19, 20],

[22, 23, 24, 25]])

array([[ 2],

[ 7],

[12]])

array([21, 22, 23, 24, 25])

array([[16, 17, 18, 19, 20],

[21, 22, 23, 24, 25]])

Now do the following

Get the sum of all the values in mat

325

Get the standard deviation of the values in mat

7.2111025509279782

Get the sum of all the columns in mat

array([55, 60, 65, 70, 75])

Good Job Kids!


Featured Posts
Recent Posts
Archive
Search By Tags
No tags yet.
Follow Us
  • Facebook Basic Square
  • Twitter Basic Square
  • Google+ Basic Square
bottom of page